SOME RESEARCH PROBLEMS ON THE PERMUTATION BEHAVIOUR OF REVERSED DICKSON POLYNOMIALS

NERANGA FERNANDO

Find the conditions on k and l explicitly for which $D_{p^l+3,k}(1,x)$ is a PP of \mathbb{F}_{p^e} .

Theorem 0.1. Assume that

(1) p = 5 and $k \neq 2$, (2) p > 5 and $k \neq 0, 2$, or (3) p > 7 and $k \neq 7$.

Then $D_{p^l+3,k}(1,x)$ is a PP of \mathbb{F}_{p^e} if and only if

$$(2-k)x^{\frac{p^{l}+3}{2}} + 6x^{\frac{p^{l}+1}{2}} + kx^{\frac{p^{l}-1}{2}} + 2(3-k)x$$

is a PP of \mathbb{F}_{p^e} .

Find the conditions on k and l_i 's explicitly for which $D_{n,k}(1,x)$ is a PP of \mathbb{F}_{p^e} .

Theorem 0.2. Let k = 1, p = 3, and $n = p^{l_1} + p^{l_2} + p^{l_3}$. Assume that $l_1 \neq 0$, $l_2 \neq 0$ and $l_3 \neq 0$. Then $D_{n,k}(1, x)$ is a PP of \mathbb{F}_{p^e} if and only if

$$g(x) = x^{\frac{p^{l_1} + p^{l_2} + p^{l_3} - 1}{2}} + x^{\frac{p^{l_1} + p^{l_2}}{2}} + x^{\frac{p^{l_1} + p^{l_3}}{2}} + x^{\frac{p^{l_2} + p^{l_3}}{2}} + x^{\frac{p^{l_1} - 1}{2}} + x^{\frac{p^{l_2} - 1}{2}} + x^{\frac{p^{l_3} - 1}{2}}$$

is a PP of \mathbb{F}_{p^e} .

Theorem 0.3. Let k = 2, p = 3, and $n = p^{l_1} + p^{l_2} + p^{l_3}$. Assume that $l_1 \neq 0$, $l_2 \neq 0$ and $l_3 \neq 0$. Then $D_{n,k}(1, x)$ is a PP of \mathbb{F}_{p^e} if and only if

$$g(x) = x^{\frac{p^{l_1} + p^{l_2} + p^{l_3} - 1}{2}} + x^{\frac{p^{l_1} - 1}{2}} + x^{\frac{p^{l_2} - 1}{2}} + x^{\frac{p^{l_3} - 1}{2}}.$$

is a PP of \mathbb{F}_{p^e} .

Theorem 0.4. Let p > 3, $k \neq 3$, and $\frac{3k}{2(k-3)}$ be a quadratic non-residue of p. Then $D_{p^{l_1}+p^{l_2}+p^{l_3},k}(1,x)$ is a PP of \mathbb{F}_{p^e} if and only if

$$k x^{\frac{p^{l_1} + p^{l_2} + p^{l_3} - 1}{2}} + (2 - k) \left[x^{\frac{p^{l_1} + p^{l_2}}{2}} + x^{\frac{p^{l_1} + p^{l_3}}{2}} + x^{\frac{p^{l_2} + p^{l_3}}{2}} \right] + k \left[x^{\frac{p^{l_1} - 1}{2}} + x^{\frac{p^{l_2} - 1}{2}} + x^{\frac{p^{l_3} - 1}{2}} \right].$$
 is a PP of \mathbb{F}_{p^e} .

Theorem 0.5. Let k = 0, p = 3, and $n = p^{l_1} + p^{l_2} + p^{l_3} + p^{l_4}$. Assume that exactly two of l_1, l_2, l_3 , and l_4 are zero and the two non zero l_i have different parity. Then $D_{n,k}(1, x)$ is a PP of \mathbb{F}_{p^e} if and only if

$$g(x) = x^{\frac{p^{l_1} + p^{l_2}}{2} + 1} + x^{\frac{p^{l_1} + p^{l_2}}{2}} + 2x^{\frac{p^{l_1} + 1}{2}} + 2x^{\frac{p^{l_2} + 1}{2}} + x$$

is a PP of \mathbb{F}_{p^e} .

Theorem 0.6. Let k = 1, p = 3, and $n = p^{l_1} + p^{l_2} + p^{l_3} + p^{l_4}$. Assume that exactly two of l_1, l_2, l_3 , and l_4 are zero and the two non-zero l_i are both even. Then $D_{n,k}(1, x)$ is a PP of \mathbb{F}_{p^e} if and only if

$$g(x) = x^{\frac{p^{l_1} + p^{l_2}}{2} + 1} + x^{\frac{p^{l_1} - 1}{2}} + x^{\frac{p^{l_2} - 1}{2}} + x$$

is a PP of \mathbb{F}_{p^e} .

Theorem 0.7. Let k = 0, p = 3, and $n = p^{l_1} + p^{l_2} + p^{l_3} + p^{l_4}$. Assume that exactly one of l_1, l_2, l_3 , and l_4 is zero. Assume that non-zero l_i are all odd or exactly one of them is odd. Then $D_{n,k}(1, x)$ is a PP of \mathbb{F}_{p^e} if and only if

$$g(x) = x^{\frac{p^{l_1} + p^{l_2} + p^{l_3} + 1}{2}} + x^{\frac{p^{l_1} + p^{l_2}}{2}} + x^{\frac{p^{l_1} + p^{l_3}}{2}} + x^{\frac{p^{l_2} + p^{l_3}}{2}} + x^{\frac{p^{l_1} + 1}{2}} + x^{\frac{p^{l_2} + 1}{2}} + x^{\frac{p^{l_3} + 1}{2}}$$

is a PP of \mathbb{F}_{p^e} .

Theorem 0.8. Let k = 0, p = 3, and $n = p^{l_1} + p^{l_2} + p^{l_3} + p^{l_4}$. Assume that $l_1 \neq 0, l_2 \neq 0, l_3 \neq 0$, and $l_4 \neq 0$. Further assume that either exactly one of l_1, l_2, l_3 and l_4 is odd or exactly three of l_1, l_2, l_3 and l_4 are odd. Then $D_{n,k}(1, x)$ is a PP of \mathbb{F}_{p^e} if and only if

$$g(x) = x^{\frac{p^{l_1} + p^{l_2} + p^{l_3} + p^{l_4}}{2}} + x^{\frac{p^{l_1} + p^{l_2}}{2}} + x^{\frac{p^{l_1} + p^{l_3}}{2}} + x^{\frac{p^{l_2} + p^{l_3}}{2}} + x^{\frac{p^{l_1} + p^{l_4}}{2}} + x^{\frac{p^{l_2} + p^{l_4}}{2}} + x^{\frac{p^{l_3} + p^{l_4}}{2}}.$$

is a PP of \mathbb{F}_{p^e} .

Theorem 0.9. Let $p \ge 5$, $0 \le k \le p-1$ with $k \ne 2$. Assume that $\frac{2(k-6)}{(2-k)}$ is a quadratic non-residue of p and at least two of l_1, l_2, l_2 , and l_4 are non-zero. Then $D_{n,k}(1, x)$ is a PP of \mathbb{F}_{p^e} if and only if

$$\begin{split} &(2-k)\,x^{\frac{p^{l_1}+p^{l_2}+p^{l_3}+p^{l_4}}{2}}+k\,\left[x^{\frac{p^{l_1}+p^{l_2}+p^{l_3}-1}{2}}+x^{\frac{p^{l_1}+p^{l_2}+p^{l_4}-1}{2}}+x^{\frac{p^{l_1}+p^{l_3}+p^{l_4}-1}{2}}+x^{\frac{p^{l_2}+p^{l_3}+p^{l_4}-1}{2}}\right]\\ &+(2-k)\,\left[x^{\frac{p^{l_1}+p^{l_2}}{2}}+x^{\frac{p^{l_1}+p^{l_3}}{2}}+x^{\frac{p^{l_2}+p^{l_3}}{2}}+x^{\frac{p^{l_1}+p^{l_4}}{2}}+x^{\frac{p^{l_2}+p^{l_4}}{2}}+x^{\frac{p^{l_3}+p^{l_4}}{2}}\right]\\ &+k\,\left[x^{\frac{p^{l_1}-1}{2}}+x^{\frac{p^{l_2}-1}{2}}+x^{\frac{p^{l_3}-1}{2}}+x^{\frac{p^{l_4}-1}{2}}\right]. \end{split}$$
 is a PP of $\mathbb{F}_{p^e}.$

Theorem 0.10. Let $p \equiv 3 \pmod{4}$ and k = 2. Then $D_{p^{l_1}+p^{l_2}+p^{l_3}+p^{l_4},k}(1,x)$ is a PP of \mathbb{F}_{p^e} if and only if

 $h(x) = x^{\frac{p^{l_1} + p^{l_2} + p^{l_3} - 1}{2}} + x^{\frac{p^{l_1} + p^{l_2} + p^{l_4} - 1}{2}} + x^{\frac{p^{l_1} + p^{l_3} + p^{l_4} - 1}{2}} + x^{\frac{p^{l_2} + p^{l_3} + p^{l_4} - 1}{2}} + x^{\frac{p^{l_1} - 1}{2}} + x^{\frac{p^{l_2} - 1}{2}} + x^{\frac{p^{l_3} - 1}{2}} + x^{\frac{p^{l_4} - 1}{2}} + x^{\frac{p^{l_4}$

0.1. Permutation behaviour of $D_{p^{l_1}+p^{l_2},k}$.

$$D_{p^{l_1}+p^{l_2},k}(1,x) = \frac{(2-k)}{4} \left(1-4x\right)^{\frac{p^{l_1}+p^{l_2}}{2}} + \frac{k}{4} \left(1-4x\right)^{\frac{p^{l_1}-1}{2}} + \frac{k}{4} \left(1-4x\right)^{\frac{p^{l_2}-1}{2}} + \frac{(2-k)}{4} \left(1-4x\right)^{\frac{p^{l_2}-1}{2}} + \frac{(2-k)}$$

Corollary 0.11. Let p = 3 and k = 2. Assume that both l_1 and l_2 are odd. Then $D_{p^{l_1}+p^{l_2},k}(1,x)$ is a PP of \mathbb{F}_{p^e} if and only if the binomial $x^{\frac{p^{l_1}-1}{2}} + x^{\frac{p^{l_2}-1}{2}}$ is a PP of \mathbb{F}_q . **Corollary 0.12.** Let $k \neq 0, 2$ and p > 3. Assume that $\frac{2k}{(k-2)}$ is a quadratic non-residue of p. Then $D_{p^{l_1}+p^{l_2},k}(1,x)$ is a PP of \mathbb{F}_{p^e} if and only if the trinomial $(2-k) x^{\frac{p^{l_1}+p^{l_2}}{2}} + k x^{\frac{p^{l_1}-1}{2}} + k x^{\frac{p^{l_2}-1}{2}}$ is a PP of \mathbb{F}_{p^e} .

References

[1] N. Fernando, Reversed Dickson polynomials of the (k + 1)-th kind over finite fields, II, arXiv:1706.01391

Department of Mathematics, Northeastern University, Boston, MA 02115 $E\text{-}mail\ address:$ w.fernando@northeastern.edu